Démontrer qu'un système admet une infinité de solutions

Soit le système d'équations: $\left\{\begin{array}{l}-6 x-3 y=-6 \\ 2 x+y=2\end{array}\right.$

Démontrer que ce système admet une infinité de solutions.

Correction

Le système équivaut à : $\left\{\begin{array}{l}-3 y=6 x-6 \\ y=-2 x+2\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=\frac{6}{-3} x-\frac{6}{-3} \\
y=-2 x+2
\end{array}\right. \\
& \qquad\left\{\begin{array}{l}
y=-2 x+2 \\
y=-2 x+2
\end{array}\right.
\end{aligned}
$$

Les deux droites ont la même équation $y=-2 x+2$,
 elles sont donc confondues et possèdent une infinité de points d'intersection.

Le système admet donc une infinité de solutions:
tous les couples $(x ; y)$ vérifiant $y=-2 x+2$.

